| COMMON PRE-BOARD EXAMINATION 2022-23 | | |
| :--- | :--- | :--- | :--- |

18)	d) A is false and R is also false	1	1
	SECTION B (TWO MARKS QUESTIONS)		
19)	(I) Let an electric dipole is placed in a uniform electric field $\overrightarrow{\mathrm{E}}, \mathrm{m}$ θ with the field, force on charge $+\mathrm{q}_{\mathrm{F}} \mathrm{F}_{\mathrm{q}}=+\mathrm{q} \overrightarrow{\mathrm{E}}$ (along $\overrightarrow{\mathrm{E}}$) force on charge $-\mathrm{q} \overrightarrow{\mathrm{F}}_{-\mathrm{q}}=-\mathrm{q} \overrightarrow{\mathrm{E}}$ (opposite to $\overrightarrow{\mathrm{E}}$) as two equal and opposite forces are acting on the dipole therefo $\overrightarrow{\mathrm{F}}=0$ (ii) We know that work done in rotating a electric dipole from θ_{1} θ_{1} is the angle of dipole with electric field) is given by , $\mathrm{W}=\mathrm{pE}\left(\cos \theta_{1}-\cos \theta_{2}\right)$ now given $\theta_{1}=0, \theta_{2}=180$ therefore $\mathrm{W}=\mathrm{pE}(\cos 0-\cos 180)=2 \mathrm{pE}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	2
20)	Permanent Magnets: 1) High Retentivity: Magnet should be strong 2) High coercivity: Magnetisation should not get affected by stray Magnetic fields. Electromagnets: 1) High Permeability :core of Iron is used for easy magnetisation. 2) Low Retentivity: For easy magnetisation/demagnetisation.	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	2
	Current in the wire, $I=35 \mathrm{~A}$ Distance of a point from the wire, $r=20$ $\mathrm{cm}=0.2 \mathrm{~m}$	$\frac{1}{2}$	

	Magnitude of the magnetic field at this point is given as: $\mathrm{B}=\frac{\mu_{0}}{4 \pi} \frac{2 I}{r}$ Where, $\begin{aligned} & \mu_{0}=\text { Permeability of free space }=4 \pi \times \\ & 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A} \\ & B=\frac{4 \pi \times 10^{-7} \times 2 \times 35}{4 \pi \times 0.2} \\ & =3.5 \times 10^{-5} \mathrm{~T} \end{aligned}$ Hence, the magnitude of the magnetic field at a point 20 cm from the wire is 3.5 $\times 10-5 \mathrm{~T}$.	$\frac{1}{2}+\frac{1}{2}$ $\frac{1}{2}$	
21)	Lenz's law states that the polarity of induced emf is such that it produces a current which oppose the change in magnetic flux that produces it. Emf will be induced in the rod as there is change in magnetic flux. When a metallic rod held horizontally along east-west direction is allowed to fall freely under gravity i.e., fall from north to south the magnetic flux changes and the emf is induced in it.	1 1	2
22)	$\begin{aligned} & \mathrm{f}_{1}=7.5 \times 10^{6} \mathrm{~Hz} \\ & \mathrm{f}_{2}=12 \times 10^{6} \mathrm{~Hz} \\ & \lambda_{1}=\mathrm{c} / \mathrm{f}_{1}=40 \mathrm{~m} \\ & \lambda_{2}=\mathrm{c} / \mathrm{f}_{2}=25 \mathrm{~m} \end{aligned}$ So the range is 40 m to 25 m	$\begin{array}{\|l} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$	2

23)	When a pentavalent impurity atom is added an n - type semiconductor is obtained.	1	2
		1	

	(ii) Since the electric field or net charge inside the spherical conducting shell is zero, the net force on charge $\mathrm{Q} / 2$ is zero Force on charge $\mathrm{A}=$ $F_{A}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 \mathrm{Q}\left(\mathrm{Q}+\frac{\mathrm{Q}}{2}\right)}{\mathrm{x}^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{3 \mathrm{Q}^{2}}{\mathrm{x}^{2}} .$		
	SECTION C (3 MARKS QUESTIONS)		
26)	(i) A galvanometer can be converted into a voltmeter by connecting a large resistance R in series with the galvanometer. The value of R is related to the maximum voltage V to be measured as $\mathrm{R}=\frac{V}{I g}-\mathrm{G}$ (b) $V=I_{g}(G+R)$ $V=I_{g}(G+R)$ $V=I_{g}(G+980)$ $\begin{equation*} \mathrm{V} / 2=\mathrm{I}_{\mathrm{g}}(\mathrm{G}+470) \ldots(2) \tag{1} \end{equation*}$ Solving equation (1) and (2) G=40 .	1 DIAGRAM $-\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3
27)	(i)According to Lenz's law, the direction of the induced current is such that to oppose the relative motion between coil and magnet.The coils try to oppose the change in magnetic field caused by moving the magnet suddenly. As N -pole of magnet is moving away the coil will try to attract it by inducing current	1 $\frac{1}{2}$	3

	in such direction that it behaves as a south pole i.e. clockwise direction. Similarly as S-pole is moving towards the coil it will try to repel it by inducing current in such a direction that it behaves as a south pole i.e, clockwise. (ii)The emf is given by $\mathrm{e}=\frac{B L^{2} \omega}{2}=0.5 \times 12 \times 400 / 2=100 \mathrm{~V}$	$\frac{1}{2}$ $\frac{1}{2}+\frac{1}{2}$	
28)	Average power consumed in resistor R $\begin{align*} P_{a v} & =\frac{1}{\int_{0}^{T} d t} \cdot \int_{0}^{T} i^{2} R d t \\ & =\frac{i_{m}^{2} R}{T} \int_{0}^{T} \sin ^{2} \omega t d t \ldots(1) \tag{1}\\ & =\frac{i_{m}^{2} R}{2 T} \int_{0}^{T}(1-\cos 2 \omega t) d t \\ & =\frac{i_{m}^{2} R}{2 T}\left[\int_{0}^{T} d t-\int_{0}^{T} \cos 2 \omega t d t\right] \tag{O}\\ & =\frac{i_{m}^{2} R}{2 T}[T-0] \\ & =\frac{i_{m}^{2} R}{2} \end{align*}$ (ii)	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3

	$\begin{aligned} & \mathrm{I}^{2} \mathrm{rms}=\frac{I_{1}^{2}}{3}+\frac{I_{2}^{2}}{3}+\frac{I_{3}^{2}}{3} \\ & =\frac{4 A^{2}}{3}+\frac{4 A^{2}}{3}+\frac{4 A^{2}}{3}=4 \mathrm{~A}^{2} \\ & \mathrm{Irms}=2 \mathrm{~A} \end{aligned}$ OR (i) Impedance of series LCR circuit is given by $Z=\sqrt{ } R^{2}+(X L-X C)^{2}$ or for Z to be minimum, $X_{L}=X_{C}$ For wattless current to flow circuits should not have any ohmic resistance i.e., $\mathrm{R}=0$ Power $=$ VrmsIrms $\cos \varphi=$ VrmsIrmscos φ for $\varphi=90 \circ=\pi / 2$ Power $=0$ \therefore Wattless current flows when the impedance of the circuit is purely inductive / capacitive of the combination of the two. (ii) Brightness of the lamp decreases. This is because on reducing C, X_{c} increases, Z increases and I decreases.	$\begin{array}{\|ll} \hline \frac{1}{2} & \\ \frac{1}{2} & \\ \frac{1}{2} & \\ \frac{1}{2} \\ \frac{1}{2} & \\ \frac{1}{2} & \\ \frac{1}{2} & \\ \hline \end{array}$	
29)	Use Einstein equation:- Incident energy, $\mathrm{E}=\varphi+\mathrm{e} \mathrm{V}_{\mathrm{s}}$ $\begin{aligned} & \Rightarrow \mathrm{E}=(3.31+3.3) \mathrm{eV} \\ & \mathrm{E}=6.61 \mathrm{ev}=\left(6.61 \times 10^{-19} \times 1.6\right) \mathrm{J} \end{aligned}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3

	$\begin{aligned} & \mathrm{E}=\mathrm{hv}=6.61 \times 1.6 \times 10^{-19} \\ & \Rightarrow \mathrm{v}=\frac{6.61 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}}=1.6 \times 10^{15} \mathrm{~Hz} \end{aligned}$ Thus, frequency of light $=v=1.6 \times 10^{15} \mathrm{~Hz}$. OR (i) Kinetic energy of photo electrons remains unaffected/It does not depend on the intensity of incident radiation. (ii) $\begin{aligned} & \text { (a) } \mathrm{E}=\mathrm{hv} \\ & =6.63 \times 10^{-34} \times 6.0 \times 10^{14} \\ & =3.98 \times 10^{-19} \mathrm{~J}=\frac{3.98 \times 10^{-19}}{1.6 \times 10^{-19}}=2.49 \mathrm{eV} \end{aligned}$ (b) No. of photons emitted per second, $\begin{aligned} & \mathrm{n}=\frac{P}{E}=\frac{2.0 \times 10^{-3}}{3.98 \times 10^{-19}} \\ & =5.0 \times 10^{15} \text { photons per second } \end{aligned}$	$\begin{aligned} & \hline \frac{1}{2} \\ & \\ & \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	

30$)$	$\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=12.5 \mathrm{eV}$ $\mathrm{E}_{\mathrm{i}}=-13.6 \mathrm{eV}$ $\mathrm{E}_{\mathrm{f}}=-1.1 \mathrm{eV}=\frac{-13.6}{n^{2}} \mathrm{eV}$ $\mathrm{n}^{2}=13.36$ $\mathrm{n}=3.35$ So hydrogen will be excited to the third energy level For wavelength of the first member of the Lyman series If the electron jumps from $\mathrm{n}=2$ to $\mathrm{n}=1$, then the wavelength of the radiation is given as: $\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3 R}{4}$ $\quad \frac{3 \times 1.097 \times 10^{7}}{4}$	$\frac{1}{2}$	$\frac{1}{2}$

	$=\frac{8.85 \times 10^{-12} \times 5 \times 10^{-3}}{2.5 \times 10^{-3}} \mathrm{~F}$ $\begin{aligned} {[\mathrm{ii}] Q } & =C V \\ & =17.7 \times 10^{-12} \times 100 \mathrm{C}=17.7 \times 10^{-10} \mathrm{C} \end{aligned}$ [iii] $\mathrm{Q}^{1}=\mathrm{kCxv}=8 \times 17.7 \times 10^{-12} \times 100=$ $1.16 \times 10^{-8} \mathrm{C}$ OR [i] $\begin{aligned} & \mathrm{U}_{\mathrm{A}}=0 \\ & \mathrm{U}_{\mathrm{B}}=\frac{K q 1 q 2}{r 12} \\ & \mathrm{UC}=\frac{k q 1 q 3}{r 31}+\frac{k q 2 q 3}{r 23} \\ & \mathrm{U}=\frac{K q 1 q 2}{r 12}+\frac{k q 2 q 3}{r 23}+\frac{k q 3 q 1}{r 31} \end{aligned}$ [ii] Flux through $\mathrm{S}_{1}, \Phi_{1}=\frac{Q}{\epsilon_{0}}$ Flux through $\mathrm{S}_{2}, \Phi_{2}=\frac{Q+2 Q}{\epsilon_{0}}=\frac{3 Q}{\epsilon_{0}}$ Ratio of flux $=1: 3 \quad 1 / 2]$ No change in flux through S_{1} with dielectric medium inside the s	$\begin{aligned} & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \end{aligned}$ Fig- $\frac{1}{2}$ $\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \\ & \frac{1}{2} \end{aligned}$

	 [ii] [a] increases [b] decreases [iii] Applying loop rule to both the lower and upper loops, we get 4 $40 \mathrm{I}_{3}+20 \mathrm{I}_{2}=80+40$ Adding the two equations, we get $80 \mathrm{I}_{3}+20\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=160$ Or $80 \mathrm{I}_{3}+20 \mathrm{I}_{3}=160$ Or $\mathrm{I}_{3}=\frac{160}{100}=1.6 \mathrm{~A}$ Again, $40 \times 1.6+20 \mathrm{I}_{1}=40$ Or $20 \mathrm{I}_{1}=40-64=-24$ Or $\mathrm{I}_{1}=-\frac{24}{20}=-1.2 \mathrm{~A}$	$\left\lvert\, \begin{aligned} & {\left[\frac{1}{2}\right]} \\ & {\left[\frac{1}{2}\right]} \end{aligned}\right.$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	

34)	SECTION-E- CASE STUDY BASED QUESTIONS		
	(i) more in cladding.	1	4
	(ii) There is no loss of intensity of light in reflecting prism/total internal reflection takes place in prism.	1	
	No change, does not depends Or (iii) Maximum for Violet. $f_{R}>f_{v}$ and focal length is inversely proportional to Magnifying power.	$\begin{aligned} & {[1+1]} \\ & 1 \\ & \frac{1}{2}+\frac{1}{2} \end{aligned}$	
35)	(i) 1.1 eV	1	4
	(ii) increases	1	
	(iii) Diffusion / drift /barrier potential any 2	$1+1$	
	OR Knee voltage: It is the positive potential at which current through the diode increases rapidly It is the maximum negative potential difference up to which a diode can tolerate without the breakdown .	[1] [1]	

